Surface depletion induced quantum confinement in CdS nanobelts.

نویسندگان

  • Dehui Li
  • Jun Zhang
  • Qihua Xiong
چکیده

We investigate the surface depletion induced quantum confinement in CdS nanobelts beyond the quantum confinement regime, where the thickness is much larger than the bulk exciton Bohr radius. From room temperature to 77 K, the emission energy of free exciton A scales linearly versus 1/L(2) when the thickness L is less than 100 nm, while a deviation occurs for those belts thicker than 100 nm due to the reabsorption effect. The 1/L(2) dependence can be explained by the surface depletion induced quantum confinement, which modifies the confinement potential leading to a quasi-square potential well smaller than the geometric thickness of nanobelts, giving rise to the confinement effect to exciton emission beyond the quantum confinement regime. The surface depletion is sensitive to carrier concentration and surface states. As the temperature decreases, the decrease of the electrostatic potential drop in the surface depletion region leads to a weaker confinement due to the decrease of carrier concentration. With a layer of polymethyl methacrylate (PMMA) passivation, PL spectra exhibit pronounced red shifts due to the decrease of the surface states at room temperature. No shift is found at 10 K both with or without PMMA passivation, suggesting a much weaker depletion field due to the freezing-out of donors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser cooling of CdS nanobelts: thickness matters.

We report on the thickness dependent laser cooling in CdS nanobelts pumped by a 532 nm green laser. The lowest achievable cooling temperature is found to strongly depend on thickness. No net cooling can be achieved in nanobelts with a thickness below 65 nm due to nearly zero absorption and larger surface nonradiative recombination. While for nanobelts thicker than ~120 nm, the reabsorption effe...

متن کامل

Formation of CdS Nanoparticles in Microemulsion Using Different Co-surfactant and Water to Surfactant Molar Ratio

Cadmium Sulphide (CdS) nanoparticles were prepared using microemulsion method using cadmium chloride as cadmium source and sodium sulphide as sulphur source. The obtained nanoparticles structures were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) whereas optical characterization was done by Ultra Violet-Visible absorption. XRD result shows that CdS nanopart...

متن کامل

Facile assembly of cadmium sulfide quantum dots on titanate nanobelts for enhanced nonlinear optical properties.

A facile route to assemble cadmium sulfide (CdS) quantum dots (QDs) uniformly on the surface of titanate nanobelts (TNBs) through electrostatic interactions is demonstrated. The photophysical properties of the resulting TNB-CdS nanostructured composite, including optical limiting properties, were studied using ultraviolet-visible absorption spectroscopy, photoluminescence spectroscopy, and the ...

متن کامل

Synthesis of Tapered CdS Nanobelts and CdSe Nanowires with Good Optical Property by Hydrogen-Assisted Thermal Evaporation

The tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical p...

متن کامل

Hole mobility increase in ultra-narrow Si channels under strong (110) surface confinement

We report on the hole mobility of ultra-narrow [110] Si channels as a function of the confinement length scale. We employed atomistic bandstructure calculations and linearized Boltzmann transport approach. The phonon-limited mobility of holes in thin [110] channels can be improved by more than 3 as the thickness of the (110) confining surface is reduced down to 3 nm. This behavior originates fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2012